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1 RSK: The Final Chapter

1.1 Diagonals in Young diagrams and generalizing geometric RSK

Let ν be a partition of k, and let f : ν → R+ be a function on squares of the Young
diagram. Define the diagonal sums αc :=

∑
i−j=c f(i, j), where c ∈ Z. Similarly, define

βc :=
∑rc

i=1

∑sc
j=1 f(i, j), where c ∈ Z.

Example 1.1. Consider the following partition.

Then
α−1 = f(1, 2) + f(2, 3) + f(3, 4) + f(4, 5)

and (rc, sc) = (5, 4) is the position of the lowermost square on this diagonal.

Theorem 1.1. Fix d, and let

Pν(d) = {f : ν → R+ | f(i, j) ≤ f(i+ 1, j) ≤ f(i, j + 1), αc(f) = dc ∀c},

Qν(d) = {g : ν → R+ | βc(f) = dc ∀c}.

Then there exists some Φ : Pν(d)→ Qν(d) such that Φ is

1. piecewise linear,

2. volume-preserving,
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3. continuous,

4. Φ : Pν ∩ ZL → Qν ∩ ZK .

Moreover, Φ commutes with transposition.

Corollary 1.1. The number of integer points in Pν(d) is the same as the number of integer
points in Qν(d).

Corollary 1.2 (reduction to RSK).

#M(a, b) =
∑
λ

# SSYT(λ, a)×# SSYT(λ, b)

Example 1.2. Let ν(``) be an ` × ` square. If we split it up along the diagonal, we get
two tableaux, a SSYT(λ, (d0 − d−1, d−1 − d−2, . . . )) and a SSYT(λ, (d0 − d1, d1 − d2, . . . )).
So in the case of a square, we get RSK.

1.2 Description and proof of generalized geometric RSK

Let’s prove the theorem.

Proof. Proceed by induction. If λ = ∅, we are done, and if λ is a square, we are also done
because P and Q are the same. Let r− s = c, so (rc, sc) = (r, s). And let ν = ν− (r, s); we
are removing a box from the diagram at position (r, s) on the boundary of the diagram.
We have Φν : P nu → Qν , and we want to get Φν .

Draw a diagonal from the square (r, s) up and left. We want to alter boxes on the
diagonal. Take ξ sending f(i, j) 7→ max{f(i − 1, j), f(i, j − 1)} + min{f(i,+1, j), f(i, j +
1)} − f(i, j). Call this f(i, j). Then we get f 7→ f ∈ Pν 7→ g ∈ Qν . How do we get g ∈ Qν
from g? Just add the last square by setting g(r, s) := f(r, s)−max{f(r−1, s), f(r, s−1)}.

Why is Φ is well-defined? Note that no two adjacent diagonals can contain corners.
Now think about the order of the squares we chop off and replace. If we write this order
in reverse, we get a Young tableau. We claim that if Γ is a graph on SYT(ν) with (i, i+ 1)
swaps allowed in distinct diagonals, then Γν is connected. If we keep switching to put every
number in our tableau in lexicographic order, we will eventually get the full lexicographic
ordering. So the graph Γν is connected, which makes this process well-defined.

Example 1.3. Take the element of Pν

1 1 4

2 3 4

4 4 5
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Chop off the 5 in the bottom right hand corner, and alter the diagonal of that 5. After
replacing the space of the 5, we get

0 1 4

2 3 4

4 4 1

Now chop off the 4 on the right in the bottom row and alter its diagonal. After replacing
that 4, we get

0 1 4

1 3 4

4 0 1

Continue like this, replacing one square at a time in the corner (of the diagram, only
counting squares we haven’t chopped off and replaced) and altering its diagonal until we’ve
altered everything.

0 2 4

1 3 0

4 0 1

1 2 4

1 1 0

4 0 1

1 2 2

1 1 0

4 0 1

Continuing like this, we eventually get

1 1 2

0 1 0

3 0 1
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